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Statistics of Adsorption on Top and Bridge Sites of a 
Square Lattice: Transfer-Matrix Approach 

A. V. Myshlyavtsev I and M. D.  Dongak  I 

Received June 19, 1996; final November 5, 1996 

Statistics of particles adsorbed on the lattice with a complex elementary cell are 
analyzed by employing the transfer-matrix technique. The results obtained are 
compared with those given by the cluster approximation and also with the 
experimental data for the CO/Ni(100) system. The transfer-matrix technique is 
shown to be very effective for studies of two-dimensional systems with complex 
lattices. 
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1. I N T R O D U C T I O N  

Adsorbed overlayers at finite coverages represent an example of nonideal 
statistical systems. To describe the phase diagrams of such overlayers and 
also rate processes with the participation of adsorbed particles, lattice-gas 
models are often used. I~ 4) As a rule, the lattice (square, triangular, or 
honeycomb) is assumed to have only one fine type of site. On the other 
hand, there are also many real systems with two or more types of adsorp- 
tion sites. For example, Fig. 1 shows the (100) face of fcc metals such as 
Pt, Pd, and Ni. In this case, there are at least three types of geometrically- 
different points (fourfold, top, and bridge) and each of them may in prin- 
ciple serve as an adsorption site. 

In the present paper, we will consider the statistics of adsorption on a 
square lattice with two (top and bridge) types of sites (Fig. 2). A real 
prototype of this model is given by CO adsorption on the (100) face of fcc 
metals. 15~ In particular, the recent careful studies of CO adsorption on 
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Fig. 1. The (100) I~ace of fcc metals: (a) the elementary cell with all the possible types of 
geometrically different points, (b) the elementary cell for CO/Ni(100). 

Ni(100) by Fourier  t ransform infrared adsorpt ion reflection spectroscopy 
(FTIRAS)  show that at room temperature and below the C O  molecules 
are located simultaneously with considerable probabil i ty both  on top and 
bridge sites) 6-81 

The model  under  considerat ion was investigated by using the 12-site 
cluster approximat ion,  cm Employing  the transfer-matrix technique, we 
demonstra te  below that the results provided by the cluster approximat ion  
are usually correct  globally, but  often miss impor tant  minor  details. 
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Fig. 2. Decorated lattice for the model under consideration. Empty and occupied sites are 
shown respectively by open and filled circles and squares, e~ and e, indicate the energy of the 
nearest neighbor and next-nearest neighbor lateral interaction. (a) The elementary cell. 
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Concluding the introduction, we note that the lattice shown in Fig. 2 
belongs to the class of so-called decorated lattices. ~c~ ~ For  such lattices, 
the lattice-gas model can sometimes be exactly solved (i.e., the partition 
function can be represented as an explicit analytical expression). In the case 
under consideration, the exact solution, to our knowledge, is lacking. 

2. MODEL AND METHOD 

To simulate adsorption on top and bridge sites of a square lattice, we 
use the same assumptions as in ref. 9: 

(i) At low coverages, the energy of adsorption on top and bridge 
sites is considered to be zero and AE, respectively. 

(ii) Simultaneous adsorption of two molecules on two nearest 
neighbor top and bridge sites or on two nearest neighbor bridge 
sites is prohibited. To refer to such a restriction the term "spatial 
constraint" is employed below. 

(iii) We take into account the nearest neighbor and next-nearest 
neighbor lateral interactions, e~ and e2 (Fig. 2). Note that here 
and below we use the terms "nearest neighbor" and "next- 
nearest neighbor" with respect to pairs which become nearest 
neighbor and next-nearest neighbor after excluding the arrange- 
ments which do not satisfy the spatial constraint rule formulated 
in the paragraph above. 

(iv) In addition, we will take into account the difference in the vibra- 
tional partition functions for adsorption on top and bridge sites. 
Significant contribution to the partition functions arises only 
from low-frequency vibrations. In the case of CO adsorption on 
the (100) face of fcc metals, the frequencies are known to be low 
only for two degenerate frustrated translations on top sites and 
for one frustrated translation on bridge sites. 

Our goal is to calculate the relative population of top and bridge sites. 
To solve this problem, one can in principle employ the cluster approxima- 
tion, transfer-matrix technique, or Monte Carlo simulations. In practice, 
however, tt/e Monte Carlo method is not effective, because the nearest 
neighbor lateral interactions may be large, and under such circumstances it 
is rather difficult to reach equilibrium. The cluster approximation with four 
top sites, eight bridge sites, and periodic boundary conditions (Fig. 3) was 
used in ref. 9. The disadvantage of this approach is known to be connected 
with its inability to describe formation of ordered structures with large unit 
cells. As shown below, this case is realized at some sets of the model 
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(a) Cluster used for calculation of top and bridge populations in ref. 9. (b) Elemen- 
tary cell and its four possible states. 

parameters, and in such cases the results given by the cluster approxima- 
tion are not accurate. 

Let us consider now application of the transfer-matrix technique for 
calculating the top- and bridge-site populations. General principles on how 
to use this technique for describing the lattice statistics are well known ~ 12. ,3~ 
(for application of this approach to solving kinetic problems, see refs. 14-17 ). 
As usual in the transfer-matrix technique, we consider a strip which is infinite 
along the Y axis and finite along the Xaxis. The strip contains M elementary 
cells in the latter direction (we employed M = 4). The elementary cell corres- 
ponding to the model and its four possible states are shown in Fig. 3. The 
periodic boundary conditions are also introduced along the X axis. Thus, we 
study the lattice-gas model on the cylinder. As was shown for simpler 
systems, the accuracy at M = 4 is better than a few percentJ 181 

Using a standard definition of the transfer matrix, we can write the 
matrix elements for such system as follows (we set k8 = 1) 

Tij = exP(�89 v i + �89 vj + v~) ( 1 ) 

where 

M 

vi = - ~  ~, (nl.i. kn, . i .k+t +n2. i. knmik+l +n3. i. kn3. i.k+l) 
k ~ l  

11,1 
C2 
T ~ (nl'i'kn2"i'k+|q-n2"i'knl'i'k+l) 

k = l  

_t (# + 2 T l n  f , )  ~ (# + T in  A - d E )  
T k=t nl.i.k-I- T (nz~'k+n3"~'k) 

k = l  

(2) 
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M 
gl 

v ~ / -  T ~ (nl'i'knl"i'k-l-n2"i'kn2"j'k-l-n3"i'kn3'j'k) 
k = l  

M 
~2 
T ~ '  ( n l ' i ' k n 3 " j ' k ' ~ - n 3 " i ' k i ~ l l ' j ' k ' ~ - F l 2 ' i ' k l ' l l ' j ' k + l ~ - n l ' j ' k l ' 1 3  i . k + l )  

k = l  

(3) 

In fact, these matrix elements are the Boltzmann factors of two nearest 
rings on the cylinder. Thus, indexes i and j indicate the possible states of 
the ringsJ ~2. ~3, 17) Here n ~. c k,  nz,  i, k, n3. i. k are the occupation numbers for 
sites in the elementary cell (Fig. 3) which are located on the kth place in 
the ring and are in the ith state, and 

f ,  = 1/[ 1 - exp( - h c o , / T ) ]  (4) 

fb = I/[  1 - exp( - t l o g J T ) ]  (5) 

are the vibrational partition functions for frustrated translations [the factor 
2 in Eq. (2) arises from degeneracy of the vibrations on top sites]. 

Without spatial constraints, the number of possible states of the rings 
is 4 'vt and the transfer-matrix size is 4 M x 4  M. Taking into account the 
spatial constraints, the transfer-matrix size can be reduced compared to 
4 M •  M (from 256• down to 136x 136 for M = 4 ) .  

The transfer matrix defined above is nonsymmetric and its right- and 
left-hand-side eigenvectors corresponding to the maximum eigenvalue are 
different. The calculation of the top-and bridge-site populations can be 
carried out as follows: 

Oh - -  Z i  ul, iu,.. in2. i, t (6) 
~'~.i Ul, iIJr, i 

0 t o  t - Y~iUciU"'i(nl'i'l+n2'i't+n3"i'l) ( 7 )  

~"i U l, iblr, i 

where u c i and u,.. ; are the ith components of the left- and right-hand-side 
eigenvectors corresponding to the maximum eigenvalue. 

To calculate the eigenvectors of the transfer matrix, we have employed 
the standard iteration procedure. 

3. RESULTS A N D  D I S C U S S I O N  

As pointed out in the introduction, our goal is to calculate the relative 
population of top and bridge sites. At low coverage (0to t ~ 1) the spatial 
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constraints are negligible, the lateral interactions are negligible as well, and 
the relative population of top and bridge sites is given by 

0,/0,, = ( f ~ /2 f h ) exp( AE/T) (8) 

At finite coverages, the transfer-matrix calculations have been done for the 
same sets of parameters as in ref. 9. 

The results of calculations are shown in Figs. 4--7. It is easily seen that 
relation (8) is fulfilled both for the transfer-matrix results and for the 
cluster approximation. ~9) In addition, one can conclude that the results 
given by the two approaches are close a t  0to t "( 0.5. This is explained by the 
absence of ordered structures with a large elementary cell at these 
coverages. For the lateral interactions (repulsion) shown in Fig. 2, the only 
ordered structure, formed on the bridge or top sites (depending on the sign 
of AE) near 0to,=0.5 at relatively low temperature, has a c ( 2 x 2 )  sym- 
metry (the corresponding elementary cell is small). (An accurate analysis of 
the ground state at low and high coverages for the introduced model is 
given in ref. 9.) 

Let us consider now the statistics at 0to,>0.5. In this case, the 
coverage dependence of the relative population of different sites predicted 
by the transfer-matrix technique has features which are lacking in that 
given by the cluster approximation. For example, the transfer-matrix 
technique predicts that the bridge fraction as a function of the total 
coverage has extremum at 0tot = 2/3 (often maximum or sometimes mini- 
mum). The magnitude of the extrema is equal to 0.5 at low temperatures. 
To understand these extrema more deeply, it is instructive to calculate the 
adsorption isotherms (Fig. 8). The horizontal segments on these isotherms 
corresponding to some "ideal" ordered structure are easily seen at 0to t = 

2/3. The analysis of the ground state for the system under consideration 
indicates that with the lateral interactions shown in Fig. 2 the ordered 
phase with the c(3 x 2) elementary cell seems to be formed at 0tot "~ 2/3. 
This ordered structure is exhibited in Fig. 9. The size of the elementary cell 
of the ordered phase is larger in this case than the cluster size used in ref. 9. 
This is a reason for the difference between the results obtained by the 
transfer-matrix technique and the cluster approximation at 0to  t > 0.5. Here 
it is relevant to note that employing the transfer-matrix technique, we 
calculate the population of top and bridge sites in fact for the M x oo 
cluster. Thus, the ordered phases with arbitrary size of the elementary cell 
along the Y axis are automatically taken into account in the framework of 
our approach. 

Finally, we make a few comments on the CO/Ni(100) system. In this 
case, the maximum coverage measured is about 0.67. ~6-8' 19) The relative 
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Fig. 4. Fraction of molecules adsorbed on bridge sites as a function of the total coverage for 
z lE= I kcal/mol, e I = 4  kcal/mol, e. ,= 1 kcal/mol, and h~o,=hcot,=5 meV at different tem- 
peratures (as indicated in the figure): (a) the results obtained by the cluster approximation; m~ 
(b) the results predicted by the transfer-matrix technique with M = 4. 
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Fig. 5. As in Fig. 4, for d E =  - 1 kcal/mol, el = 4 kcal/mol, e 2 = 1 kcal/mol. 
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hoJ h = 3.7 meV [ the  notat ion (3, 0) means  el = 3 kcal/mol and e2 = 0 kcal/mol, etc.]. 
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population of top and bridge sites obtained in the experiment at 0to t < 

0.67 (~8) are close to those predicted by the transfer-matrix technique for the 
model under consideration with the parameters  proposed in ref. 9 (Fig. 10). 

It is also of interest that the transfer-matrix technique yields, in agree- 
ment with the experiment, a more rapid growth of the bridge fraction at 
0.5 < 0,o t < 0.67 compared to that given by the cluster approximation. 
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Fig. 9. Ordered c(3 x 2) structure at 0~,,, = 2/3 and O, = 01, = 1/3. 
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Fig. 10. Fraction of CO molecules adsorbed on bridge sites as a function of coverage 
calculated at T =  300 K with z tE= - 2 0  meV, hco,= 3.2 meV, h~o h= 3.7 meV, and several 
sets of the adsorbate-adsorbate interactions [the notation (3, 0) mean e I = 3  kcal/mol and 
e2 = 0 kcal/mol, etc. ]. 
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4. CONCLUSION 

We have shown that the transfer-matrix technique is very effective for 
studies of the statistics of adsorption on periodic lattices with a few types 
of adsorption sites per elementary cell. In particular, this technique can 
describe rather accurately ordered phases with a large elementary cell. 
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